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Abstract

Asymptotic ®elds of stress, strain rate and damage of a mode I creep crack in steady-state growth are analyzed on
the basis of Continuum Damage Mechanics by employing a semi-inverse method. A damage ®eld D�x� for steady-
state crack growth represented by an undetermined power function rl of radius r from the crack tip is assumed ®rst,
and the corresponding asymptotic stress ®eld of a mode I crack in a non-linear creep damage material is analyzed

by solving a two-point boundary value problem of non-linear di�erential equations. Then, the exponent l of
undetermined damage ®eld is determined so that the assumed damage ®eld D�x� may be consistent with the
resulting asymptotic stress ®eld and the damage evolution equation. Finally, the relations between exponent p of the

asymptotic stress distribution and exponents n and m of power creep constitutive law and the power creep damage
law are elucidated. The e�ects of material damage on the crack-tip stress ®eld in non-linear materials are discussed
in detail. Comparison between the results of the present analysis and those of earlier papers of fracture mechanics

on the creep-crack growth analyses based on grain-boundary cavitation is also made. 7 2000 Elsevier Science Ltd.
All rights reserved.

Keywords: Damage mechanics; Creep damage; Mode I crack; Crack-tip; Stress ®eld; Damage ®eld; Stress singularity; Fracture;

HRR stress ®eld

1. Introduction

Though the HRR ®eld (Hutchinson, 1968; Rice and Rosengren, 1968) has been obtained for an ideal

discrete crack in intact non-linear hardening materials, the fracture process in usual ductile materials is

International Journal of Solids and Structures 37 (2000) 6203±6220

0020-7683/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683(99 )00267-X

www.elsevier.com/locate/ijsolstr

* Corresponding author. Fax: +81-52-789-2505.

E-mail address: murakami@mech.nagoya-u.ac.jp (S. Murakami).



brought about by nucleation, growth and coalescence of distributed microscopic cavities in front of the
crack-tip, and this damage ®eld gives signi®cant in¯uence on stress ®eld near the crack-tip. Therefore,
analyses of e�ects of material damage on the stress and strain ®elds near crack-tip in non-linear
materials provide very important problems not only for evaluation of crack behaviour in materials but
also for discussion of stability and convergency of numerical analyses. In this context, these problems
have been discussed in a number of papers, especially for elastic±plastic-brittle cracks (Bui and
Ehrlacher, 1980), elastic±plastic cracks (Knowles and Sternberg, 1980, 1981; Wang and Chow, 1992;
Zhang et al., 1993; Gao and Bui, 1995; Benallal and Siad, 1997), creep cracks (Bassani and Hawk, 1990;
Astafjev et al., 1991; Astafjev and Grigorova, 1995; Lu et al., 1997) and fatigue cracks (Zhao and
Zhang, 1994).

In the case of creep cracks, in particular, the asymptotic stress ®elds at the crack-tips in
materials subject to damage were analyzed by Astafjev et al. (1991) and Astafjev and Grigorova
(1995) for mode I and mode III creep cracks in steady-state growth, and by Lu et al. (1997) for
a mode I stationary crack. However, because of di�culties of stress-damage coupled analysis, they
could not derive complete and consistent results. Namely, Astafjev and Grigorova (1995) could not
satisfy the boundary conditions of a sharp crack in their numerical analysis, and obtained an
approximate solution by replacing the boundary conditions by those of a V-notch; this replacement
may lead to a signi®cant error in stress singularity at the crack-tip (Williams, 1952). Though Lu et
al. (1997), on the other hand, made a priori assumption of vanishing stress components at the
crack tip, this assumption may give too much constraints to the analysis; i.e., these analyses may
need further re®nement.

One of the major causes in di�culty in the analyses of crack tip ®elds in damaged or strain softening
materials is concurrence of the elliptic and hyperbolic regimes of the governing ®eld equations together
with related discontinuity in deformation gradient and stress (Knowles and Sternberg, 1980, 1981;
Benallal and Siad, 1997). Moreover, the mathematical structure of governing equations may be a�ected
largely by the modeling of damage.

Bassani and Hawk (1990), furthermore, analysed the in¯uence of creep damage on crack-tip ®elds
under small-scale-creep conditions by the use of ®nite element method. However, because their analysis
is numerical and is concerned with a blunt crack, systematic information on the e�ect of material
damage on the asymptotic crack-tip ®eld is not available from the analysis.

Because of the engineering importance, a number of papers discussed the problems of creep-crack
growth also from the view point of fracture mechanics and micromechanics (Riedel and Rice, 1980; Hui
and Riedel, 1981; Riedel, 1987; Hutchinson, 1983). However, most of these analyses are not only one-
dimensional and are focused on a plane in front of the crack-tips, but also disregard the e�ect of
damage on the stress ®elds. Therefore, systematic and three-dimensional analyses of the crack-tip ®eld in
materials undergoing creep damage are hardly available in these papers of fracture mechanics.

The present paper is concerned with an elaborate continuum damage mechanics analysis of the
asymptotic ®elds near a mode I creep crack in steady-state growth; damage ®eld and its e�ects on the
asymptotic stress- and strain-rate ®elds at the crack are solved by the semi-inverse method. Namely, a
damage ®eld for steady-state crack growth represented by an undetermined power function rl of radius r
from the crack tip is assumed ®rst, and the corresponding asymptotic ®elds of stress and strain-rate of a
mode I creep crack are analyzed by employing power-law creep damage theory (Kachanov, 1986;
Lemaitre and Chaboche, 1990; Lemaitre, 1996). Then, the exponent l of the undetermined damage ®eld
is determined so that the assumed damage ®eld may be consistent with the resulting stress ®eld and the
damage evolution equation. Finally, the relations between exponent p of the asymptotic stress ®eld sij �
K ~sij�y�r p at the crack tip and exponents n and m of power creep constitutive law and the power creep
damage equation are elucidated. The e�ects of material damage on the crack-tip stress ®eld for non-
linear materials are discussed in some detail. Comparison between the results of present analysis and
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those of earlier papers of fracture mechanics on creep-crack growth analyses based on grain-boundary
cavitation is also discussed.

2. Governing equations and asymptotic stress ®eld

2.1. Governing equations

Let us take a mode I creep crack extending at a constant rate v in a stationary cartesian coordinate
system Oÿ X1X2X3 as shown in Fig. 1, and assume that the material in the vicinity of the crack is in
the state of plane strain or of plane stress. Then, we further move cartesian coordinates oÿ x1x2x3 and
polar coordinates oÿ ryz with origins o at the tip of moving cracks, where the direction x1 and that of
y � 0 are in the direction of crack extension. By denoting the components of stress and strain with
respect to moving coordinates by sij and eij, the governing equations for a mode I creep crack in steady-
state extension are given as follows:

Components of stress

srr � 1
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where F � F�r, y, z� is the Airy stress function.

Fig. 1. Stationary and moving coordinate systems.
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Condition of compatibility
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where ��� denotes the material time derivative with respect to time t.

Constitutive equation of creep
If we represent the damage state of material by an isotropic damage variable D�0RDR1�, and

employ the hypothesis of strain equivalence in damage mechanics, the creep constitutive equation of a
damaged material can be given as follows (Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre,
1996):

_eij � 3

2

Asnÿ1EQ sij

�1ÿD�n �i, j � 1, 2, 3� �3�

where sij � sij ÿ �1=3�skkdij and sEQ � �3sijsij=2�1=2 are the deviatoric stress and the equivalent stress,
respectively. The symbols n and A are the creep exponent and material constant, respectively.

Evolution equation of creep damage
By assuming that the creep damage is governed by the equivalent stress, the damage evolution

equation in multi-axial state of stress may be given as follows (Kachanov, 1986; Lemaitre and
Chaboche, 1990; Lemaitre, 1996):

_D � B

�
sEQ

1ÿD

�m

�4�

where D�r, y, z, t� is the damage variable, while B and m �m > 0� denote material constants. In the
particular case of steady-state crack growth, we have

@D

@t
� 0 �5�

and hence Eq. (4) leads to

ÿcos y
@D

@r
� sin y

r

@D

@y
� B

v

�
sEQ

1ÿD

�m

�6�

2.2. Asymptotic stress ®eld

Since the present paper aims to elucidate the e�ect of material damage on the asymptotic ®elds near
the creep-crack tip, we will assume the following asymptotic solution for the crack-tip stress:

F�r, y� � Krsf�y� �7�
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where K and s are undetermined constants, while f �y� is an unknown function of y: By substituting Eq.
(7) into Eq. (1), we have the components of the asymptotic stress ®eld as follows:

srr�r, y� � Kr p
�
s � f�y� � f 00�y�� � Kr p ~srr�y�

syy�r, y� � Kr p
�
s�sÿ 1�f�y�� � Kr p ~syy�y�

sry�r, y� � Kr p
��1ÿ s�f 0�y�� � Kr p ~sry�y�

sEQ�r, y� � Kr p ~sEQ�y� �8�
where p � sÿ 2 represents the exponent of stress ®eld, and ~srr�y�, . . . , ~sEQ�y� are given by expressions in
the corresponding brackets [ ] in Eq. (8). In view of Eq. (8), the undetermined constant K corresponds
to the stress intensity factor of a non-linear material and depends on exponent n of the creep
constitutive equation (3).

3. Semi-inverse solution of non-linear di�erential equations

In order to determine the asymptotic stress ®eld at the crack-tip, we will have to determine ®rst the
damage ®eld D�r, y� by substituting the stress of Eq. (8) into Eq. (6). Once D�r, y� were determined, then
by substituting the creep rate _eij of Eq. (3) obtained from the resulting D and stresses of Eq. (8) into the
equation of compatibility (2), a set of non-linear ordinary di�erential equations for the unknown
function f �y� could be derived. However, it is di�cult in general to derive a rigorous solution of D�r, y�
from Eq. (6) throughout the whole region of analysis.

Thus, in the present analysis, we will determine by semi-inverse method an asymptotic damage ®eld
which satis®es the evolution equation (6) in the region in front of the crack-tip. Namely, by referring to
experimentally observed damage ®eld (Liu et al., 2000), we ®rst postulate an elliptic damage distribution
represented by a power function h�y�rl of radius r as shown in Fig. 2. Then, the asymptotic stress ®eld
can be obtained by the use of resulting damage ®eld and Eqs. (2), (3) and (8), and ®nally the exponent l

Fig. 2. Mode I crack and damage ®eld.
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of the undetermined damage ®eld can be determined so that the postulated damage ®eld together with
the relevant stress ®eld may satisfy the damage evolution equation (6).

3.1. Elliptic damage distribution at crack-tip

According to the experimental observation on the damage distribution around a mode I creep crack
in OFHC copper at 2508C in steady-state growth (Liu et al., 2000), contour of the damage ®eld can be
represented by a semi-ellipse in front of the crack and by a wake parallel to the crack plane behind the
crack.

In view of this observation, we will now assume the damage distribution of Fig. 2 represented as
follows:

1ÿD � h�y�
�
r

r0

�l

�0Rl < 1� �9a�

h�y� �

8><>:
h
�cos y=k�2��sin y�2

il=2
0RyRp=2

�sin y�l p=2 < yRp
�9b�

where l and r0 are parameters characterizing the damage distribution, while h�y� and k denote the y-
distribution of the damage ®eld and its aspect ratio. The locus r � r0h�y�ÿ1=l, in particular, represents
the boundary of the damage ®eld where D � 0, and hence is the boundary between the damaged and
the undamaged region.

3.2. Di�erential equations of the asymptotic stress ®eld for elliptic damage distribution

As described already, by substituting the stress and damage ®elds of Eqs. (8) and (9) into the creep
constitutive equation (3), and then by substituting the resulting creep rate _eij into the equation of
compatibility (2), we can readily obtain the di�erential equations governing unknown function f �y�: The
di�erential equations can be written for the states of plane strain and plane stress as follows:

State of plane strain

�
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�10b�
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State of plane stress
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3.3. Boundary conditions of di�erential equations and their numerical solutions

Because of the symmetry of the stress components srr and syy at y � 0 and of the vanishing condition
of the stress components sry and syy at the crack plane y � p, we have the following two boundary
conditions for the di�erential equations (10) and (11):

f 0�0� � 0, f 000�0� � 0 �12�

f�p� � 0, f 0�p� � 0 �13�
The two-point boundary problem of Eqs (10)±(13) for the asymptotic stress ®eld f �y� can be solved by

a Shooting Method (Hutchinson, 1968) as an initial value problem. For this purpose, the initial values
of f �0� and f 00�0� should be speci®ed besides the initial conditions of Eq. (12). Since the di�erential
equations (10) and (11) are homogeneous with respect to function f �y�, the value of f �0� can be speci®ed
arbitrarily. As regards f 00�0�, on the other hand, we will specify a proper undetermined constant b: Then,
besides the condition (12), additional initial conditions

f�0� � 1, f 00�0� � b �14�
are prescribed for the di�erential equations (10) and (11).

In order to calculate the di�erential equations (10) and (11) by a shooting method for a given damage
®eld (i.e., for given l and h�y�), Eqs. (10) and (11) can be readily integrated numerically if the values of
the exponent s in Eq. (8) and the undetermined constant b of Eq. (14) are given properly. Thus, the
values of s and b can be determined as the eigen values s� and b� of the di�erential equations such that
the numerical solution f �y� may satisfy the boundary conditions (13) on the crack plane:

f�p� � F1�s, b� � 0

f 0�p� � F2�s, b� � 0 �15�
Solution f �y� can be determined as an eigen function of the eigen values s� and b�:

The numerical integration of di�erential equations (10) or (11) to obtain f �y� are performed by the
fourth-order Runge±Kutta method, while the solution of non-linear simultaneous equations for s�, b�
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are obtained by the Gauss±Newton least-square method so that they satisfy the condition f �p�2 �
f 0�p�2 < 10ÿ6:

The eigen values s� and b� which satisfy the condition (15) are not unique in general. Thus, we will
obtain only the solution which corresponds to the lowest exponent s, and this lowest exponent s is
subjected to the following condition of the bounded stress work done in a material element including
crack tip:

s >
�2� l�n
�n� 1� �16�

3.4. Coupled solution of the asymptotic stress and damage ®elds

In the above analysis, the two-point boundary value problem of di�erential equations (10) or (11)
together with the boundary conditions (12)±(15) was calculated for the prescribed damage ®eld of Eq.
(9), and gave the relation among the exponent of the damage distribution l, the creep exponent n and
exponent s (or p ) of the stress distribution. However, the damage ®eld (9) is not consistent with the
damage evolution equation (6) and the resulting asymptotic stress ®eld.

Since the determination of the damage ®eld which satis®es the damage evolution equation for the
entire region of the problem is di�cult, we will satisfy this condition approximately by specifying the
damage ®eld of Eq. (9) so that it may be consistent with the evolution equation (6) only in the region in
front of the crack because this region gives largest in¯uence on the asymptotic ®elds.

On the crack plane y � 0 in front of the crack, the evolution equation (6) is reduced to

B

v

�
sEQ

1ÿD

�m

� ÿ@D
@r

�17�

Substitution of Eqs. (8) and (9a) into this equation gives

B

v

1

l
�kr0 �l�m�1�

�
K ~sEQ�0�

�m� r�m�1�lÿpmÿ1 �18�

In order that this condition could be satis®ed always, we have the following relations:

l � pm� 1

m� 1
�19a�

v � B

l
�kr0�l�m�1�

�
K ~sEQ�0�

�m �19b�

which speci®es the exponent l of the damage distribution (9) and the steady-state crack rate v. Eq. (19b)
implies that the crack rate v is proportional to the coe�cient B of the damage evolution equation (6)
and to the stress �K ~sEQ�0��m: As observed from Eq. (9a), exponent of damage distribution has the value
0Rl < 1, and hence Eq. (19b) predicts the in®nite crack rate v � 1 in the case of uniform damage l �
0:

The stress and the damage ®eld in front of an extending crack together with the ensuing creep-crack
growth rate depends signi®cantly on the level of applied load (Riedel and Rice, 1980; Riedel, 1987). The
creep-crack growth rate v under HRR ®eld has been reported to be characterized by the non-linear
fracture mechanics parameter C � (Riedel, 1987; Chung et al., 1990). It should be noted that Eq. (19b)
implies that creep-crack rate v is related to the exponent m of the creep damage evolution equation (4)
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in addition to the creep exponent n of Eq. (3), and shows clear contrast with the results of earlier papers
because C � is characterized by the creep exponent n.

4. Results of analysis and discussions

4.1. E�ects of material damage on the stress singularity at crack-tip

In the numerical analysis of Section 3.3, the eigen value s (and hence the exponent of the stress ®eld
p � sÿ 2� has been obtained for given sets of the damage exponent l and the creep exponent n as
parameters; i.e., we have pÿ lÿ n relation among the exponents of p, l and n. The detailed numerical
procedure to obtain pÿ lÿ n relation and its explicit result have been reported in the previous paper of
the authors (Liu and Murakami, 1998).

Eq. (19a) of Section 3.4, on the other hand, speci®es the consistent values of l as a function of the
exponent p of stress distribution and exponent m of the damage evolution equation; i.e. pÿ lÿm
relation. By the use of these two relations of pÿ lÿ n and pÿ lÿm, we can readily calculate the value
of exponent p as a function of the creep exponent n and damage exponent m.

The small circles in Fig. 3 show the numerical results for the exponent p of the asymptotic stress ®eld
(8) of mode I creep crack in steady-state growth, for the case of k � 1 in Fig. 2. The dotted lines, on the
other hand, represent the exponent p of the HRR stress ®eld for undamaged non-linear materials:

p � ÿ 1

n� 1
�20�

Since the exponent p < 0 implies the stress singularity at the crack-tip r � 0, the HRR ®eld has always
stress singularity for any ®nite value of the stress exponent n. However, as observed in Fig. 3, the
presence of material damage increases signi®cantly the value of the exponent p, and may give non-
singular stress ®eld even for ®nite values of n. Namely, Fig. 3 shows that the stress singularity of the
asymptotic ®eld is determined by the relative values of n and m, and this is a very important result as
the e�ect of the material damage on the asymptotic ®eld at a crack-tip.

By comparing Fig. 3(a) and (b), it will be observed that, for a given set of n and m, the case of plane
strain has larger stress singularity than that of the plane stress, which is di�erent from the cases of
undamaged non-linear materials (Hutchinson, 1968; Rice and Rosengren, 1968).

In the fracture tests of ductile materials, the fracture toughness of cracked thick specimens is known
to be lower than that of thin specimens. This is usually attributed to the triaxial stress at the crack tip
induced in the state of plane strain. Fig. 3 shows that, when a damage ®eld exists at the crack tip,
besides the triaxial stress, plane strain state has larger stress singularity. Thus, it should be noted that, in
view of material damage, the fracture toughness of ductile materials in the state of plane strain may be
further decreased from that of plane stress state.

Finally, the solid lines in Fig. 3 represent the approximate expression to the corresponding numerical
results, and are given by the following relations:

p � n�1�c=n� ÿ �m� 1�
n�m�1� nÿ n�1�c=n� � � 1

�21a�

c � 0:100 �plane strain state�

c � 0:370 �plane stress state� �21b�
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Eq. (21) coincides with the numerical results within the error of 0.01 (plane strain state) and 0.02 (plane
stress state) except for a few results of m � 1:

4.2. Criterion of the stress singularity at crack tip in the state of plane strain

According to the previous paper of the authors (Liu and Murakami, 1998) (where symbol m was used
instead of l ) in the state of plane strain, the pÿ lÿ n relation described in Section 4.1 can be expressed
by the following approximate relation:

p � lnÿ 1

n� 1
�22�

Fig. 3. Stress singularity of a mode I creep crack in steady-state growth.
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By substituting Eq. (22) into Eq. (19a) we have l , and thus substitution of this l into Eq. (22) gives the
following relations:

p � nÿ �m� 1�
n�m� 1

�23a�

l � nÿ �mÿ 1�
n�m� 1

�23b�

Relations (23a) and (23b) give the approximate relations among the creep exponent n, the damage
exponent m, the exponent of stress distribution p and exponent l of the damage distribution consistent
to the stress distribution of Eq. (8).

Since the damage variable has the range 0RDR1, Eq. (9) speci®es the exponent l to be lr0: Then,
Eq. (23b) imposes the condition

nrmÿ 1 �24�
which is usually satis®ed because the relation

nrm �25�
is ascertained for most metallic materials (Kachanov, 1986).

According to Eqs. (23a) and (24), the value of the exponent of stress distribution p is

p < 0, mÿ 1Rn < m� 1 �26a�

pr0, m� 1Rn �26b�
Namely, this result implies that the asymptotic stress ®eld at a crack tip may be singular or non-singular
when the set of exponents n and m is in the range of Eq. (26a) or Eq. (26b). It should be noted once
more that the condition (26a) is subject to the limitation of a physical requirement (25) for engineering
metallic materials.

The result of Eq. (26) furnishes very important information not only for the evaluation and
understanding of creep crack behavior in structural component, but also for the discussion of the
stability and the convergency of its numerical analyses. Namely, the problem of mesh-dependence of
numerical results is usually one of the most crucial problems in the local approach of fracture based on
the ®nite element method and damage mechanics; besides the hyperbolicity of the governing equations,
the singularity at the crack tip may be one of the major causes of the mesh dependence. Then, Eq. (26)
may give a criterion for this purpose.

The result of Eq. (23a) is entered also in Fig. 3(a) by dashed lines. As observed in the ®gure, as
regards the value of n corresponding to the bound of singularity p � 0, Eq. (23a) coincides with the
corresponding numerical results within the error of 5%.

In the case of the plane stress, on the other hand, it is di�cult to do a similar argument as above,
because we could not obtain a simple expression for p as Eq. (22).

4.3. E�ects of damage ®eld on the state of asymptotic stress

Fig. 4(a) and (b) show the e�ects of a damage ®eld on the radial distribution of the asymptotic stress
®eld at the creep-crack tip in the case of a typical creep exponent n � 5: The solid and dashed lines were
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calculated by the stress ®eld of Eq. (8) together with di�erent values of the exponent p shown in Fig. 3.
The dotted lines, on the other hand, represent the asymptotic stresses of the undamaged HRR ®elds.
Though the lines of m � 6 coincides with that of the HRR ®eld because the case of m � n� 1
corresponds to the undamaged materials, they have been eliminated in Fig. 4 because of the physical
requirement of Eq. (25).

In view of Eq. (8), all the stress components sij as well as the equivalent stress sEQ have an identical
radial distribution, and these radial distributions are also same in all y-directions.

Since the radius r � r0 represents the boundary between the damaged and undamaged zone and
implies D � 0, all the lines in Fig. 4 attain to an identical value of sij=�Kr p

0 ~sij � � 1 corresponding to the
undamaged material (i.e., the value corresponding to HRR ®eld) at r=r0 � 1: When r=r0 tends to 0, on
the other hand, the stresses sij for m � 5 tend to 1 since the stress exponent p is negative in this case.

Fig. 4. Radial distribution of crack-tip stress.
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Hitherto a number of models have been reported to analyze the process of creep-crack growth from
the view point of damage mechanics (Bassani and Hawk, 1990; Astafjev et al., 1991; Astafjev and
Grigorova, 1995; Lu et al., 1997) and of fracture mechanics and micromechanics (Riedel and Rice, 1980;
Hui and Riedel, 1981; Hutchinson, 1983; Wu et al., 1986; Riedel, 1987; Chung et al., 1990). Besides that
most of these analyses are one-dimensional, the e�ects of damage on the stress ®eld have been hardly
elucidated systematically. However, Bassani and Hawk (1990), among them, analysed damage and stress
®eld at a mode I blunted creep-crack in plane strain state by ®nite element method by employing
Kachanov-type creep damage constitutive equations. They demonstrated variation of the stress
distribution from the elastic crack-tip ®eld at the instant of loading through the stage of creep-crack
growth. Their analysis show that after the crack starts to grow, the crack tip stress decreases towards

Fig. 5. Circumferential distribution of crack-tip stress (plane strain state, k � 1).
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zero due to damage. Since the creep and the damage exponent in their analysis are n � 5 and m � 3,
their results conform to the results of Fig. 4(a).

Figs. 5 and 6, on the other hand, show the y-variation of the three stress components ~srr, ~syy and ~sry
and of the equivalent stress ~sEQ for the states of plane strain and plane stress, respectively. The HRR
®eld has been entered by dotted lines for the sake of comparison. The cases of (a) and (b) in these
®gures correspond to the non-singular stress ®elds �n � 5, m � 3� and the singular stress ®elds
�n � 5, m � 5), respectively. Because the magnitude of the coe�cient K of Eq. (8) is unknown, the
results of Figs. 5 and 6 have been normalized by the use of the equivalent stress ~sEQ�0�:

In the case of the plane strain state of Fig. 5, though the stress components show smooth distribution,
every component vanishes at y � p because of damage. This is in contrast to HRR ®eld shown by

Fig. 6. Circumferential distribution of crack-tip stress (plane stress state, k � 1).
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dotted lines. The stress components ~syy and ~srr in Fig. 5(b) have larger values at y � 0 than those of
Fig. 5(a), and this may be accounted for by the singular stress ®eld in Fig. 5(b).

As regards the plane stress state of Fig. 6(a) and (b), on the other hand, dominant singularity is
observed in y-distribution, and it is more salient in the case of singular stress ®eld of Fig. 6(b). In both
cases, all the stress components at y � p vanish because of its complete damage.

Fig. 7. E�ects of the shape of damage distribution.
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4.4. Singularity of the strain rate ®eld

By substituting the asymptotic stress of Eq. (8) and the damage distribution (9) into the creep
constitutive equation (3), we have the expression of the creep rate

_eij �
�
3

2

�
AK nr�pÿl�n~_eij�y� �27a�

where

~_eij�y� � ~sEQ�y�nÿ1 ~sij�y�
�

rl0
h�y�

�n
�27b�

In view of 0Rl < 1, Eq. (22) gives

�pÿ l�n � ÿ�l� 1�n
n� 1

< 0 �28�

and thus strain rates _eij is always in®nite at the crack tip r � 0 irrespective of the nature of the
asymptotic stress ®eld. This may correspond exactly to the steady-state crack growth.

4.5. E�ects of the shape of damage distribution

By referring to the experimental observations (Liu et al., 2000), the semi-inverse analysis of Chapter 3
was performed by postulating the damage distribution of Fig. 2. However, the numerical analysis of
Section 4 has been performed for the special case of the shape factor k � 1; i.e., semi-circular damage
®eld in front of the crack combined with a wake parallel to the crack plane.

In order to discuss the e�ect of shape of the damage region in some detail, we will now perform the
calculation for ®ve cases of shape factor k � 1:0±3:0: Fig. 7(a) and (b) shows the relations between the
damage shape factor k and exponent of stress distribution p for a stress exponent n � 5, for the states of
plane strain and plane stress. The results of Fig. 7 shows that the e�ects of damage shape factor k is
insigni®cant for each case of the damage exponent m. This implies that the factor which governs
singularity of the asymptotic stress ®eld is local character of the damage ®eld rather than the global
geometry of the damage distribution.

5. Conclusions

The e�ects of material damage on the asymptotic stress ®eld of a mode I creep crack in steady-state
growth were analysed on the basis of continuum damage mechanics by postulating power law creep
damage theory. The resulting governing di�erential equations were solved by semi-inverse method. The
relations between exponent p of the asymptotic stress ®eld and exponents n and m of the power law
creep constitutive law and the power creep damage law were elucidated in detail. The results of the
present analysis are summarized as follows:

1. While the HRR-®eld of non-linear fracture mechanics always shows the stress singularity at the
crack-tip for any ®nite value of the creep exponent n, the preceding material damage in front of the
crack tip decreases the singularity, and may give non-singular stress ®eld.

2. In the particular case of mode I creep crack in the state of plane strain, by representing the
asymptotic stress ®eld at the crack-tip and the preceding damage ®eld by the expressions
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sij�r, y� � K ~sij�y�r p, D�r, y� � 1ÿ h�y��r=r0 �l �29�
approximate expressions for p and l were derived as follows:

p � nÿ �m� 1�
n�m� 1

, l � nÿ �mÿ 1�
n�m� 1

�30�

where n and m are exponents of the power creep law and the power creep damage law. For a
uniform damage distribution l � 0, this relation leads to p � ÿ1=�n� 1� and is reduced to the HRR
®eld.

3. The above relations imply that the conditions mÿ 1Rn < m� 1 and m� 1Rn give the relations p <
0 and pr0; i.e., singular and non-singular stress ®elds, respectively. This results furnishes very
important information not only for evaluation and understanding of creep crack behavior, but also
for discussion of stability and convergency in its numerical analyses.

4. While the asymptotic stress ®elds in the states of plane strain and plane stress have the identical stress
singularity in undamaged materials, the state of plane strain has more signi®cant stress singularity
than that of plane stress in the case of preceding damage.
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